

Literature Review

Low-Cost And Effective Water Purification Technologies for Rural Communities in Malawi

Arnold Valaro ¹, Lloyd Mataka²

¹ TSS. Malawi

²Lewis-Clark State College, USA

1. INTRODUCTION

Access to clean and safe drinking water remains a fundamental challenge in rural Malawi, where a significant portion of the population depends on unprotected water sources such as rivers, shallow wells, and boreholes. According to the National Statistical Office, only 43% of rural households have access to safe water. Contaminated water sources often contain biological pathogens (e.g., bacteria, parasites) and chemical impurities, leading to waterborne diseases such as diarrhoea and cholera, which disproportionately affect children under five. This pressing public health issue underscores the urgent need for affordable, effective, and sustainable water purification solutions tailored to rural contexts.

2. TRADITIONAL AND CONVENTIONAL WATER TREATMENT METHODS

Traditional methods of water purification in Malawi include boiling, sedimentation, and chemical disinfection, primarily using chlorine. While boiling is effective against microbial contaminants, it is fuel-intensive, costly, and time-consuming, making it impractical for many households. Sedimentation removes visible particulates but does not address microbial contamination. Chemical treatment, though effective, is often unaffordable and requires consistent supply and dosage knowledge, which is lacking in many rural areas. Idika et al. (2007) note that these methods, though widely practiced, are insufficient to ensure comprehensive water safety.

3. EXISTING LOW-COST FILTRATION TECHNOLOGIES

Several low-cost water treatment technologies have been introduced in Malawi, with varying degrees of success and adoption.

3.1. Bio-Sand Filters (BSFs)

Bio-sand filters utilize layers of sand and gravel to remove pathogens and suspended solids through biological and physical processes. Studies by Mwale et al. (2015) and organizations such as CAWST (2019) report that BSFs can significantly reduce bacterial contamination and turbidity. However, their effectiveness depends on proper construction, maintenance, and user awareness—factors often lacking in rural settings. Water Aid Malawi (2018) has promoted BSFs but notes challenges related to sustainability and community training.

3.2 Ceramic Water Filters

Ceramic filters, made from locally sourced clay, are porous barriers that effectively remove bacteria and sediments. Research by Nabatanzi-Muyimba (2017) and Brown & Sobsey (2009) highlights their potential, especially when enhanced with silver nanoparticles for improved antimicrobial action. Nevertheless, ceramic filters are fragile, require careful handling, and depend on local production capacity and user education for long-term use.

3.3 Membrane Filtration Technologies

Corresponding author: Arnold Valaro

DOI: 10.5281/zenodo.17966224

Received: 05 Dec 2025; **Accepted:** 13 Dec 2025; **Published:** 18 Dec 2025

Copyright © 2025 The Author(s): This work is licensed under a Creative Commons Attribution- Non-Commercial-No Derivatives 4.0 (CC BY-NC-ND 4.0) International License

Membrane-based systems, including simple column filters using plastic bottles, have been explored as low-cost options. These systems physically separate contaminants through porous materials and can be constructed using locally available adsorbents. While promising, their scalability and maintenance in rural areas remain understudied.

4. Adsorbent-Based Water Purification

Recent research has focused on natural and locally available adsorbents for water treatment. Materials such as rice husk ash, activated charcoal, sugarcane bagasse, red soil, and cotton have demonstrated potential in removing physical, chemical, and biological contaminants. Telgote and Patil (2023) reviewed various adsorbents and concluded that composite materials—particularly those rich in iron or activated carbon—show high efficacy in reducing turbidity, heavy metals, and microbial loads. This supports the development of multi-layer adsorption systems that leverage indigenous materials for decentralized water treatment.

5. Contextual Barriers to Adoption

Despite technological innovations, several barriers impede the widespread adoption of purification systems in rural Malawi:

- **Affordability:** High costs associated with materials, maintenance, and replacement parts limit accessibility (Manda et al., 2016).
- **Awareness and Training:** Many communities lack knowledge about operation, maintenance, and health benefits of water treatment systems.
- **Infrastructure and Logistics:** Limited access to testing facilities, technical support, and supply chains hinders implementation and monitoring.
- **Sustainability:** Without community involvement and local capacity building, even effective technologies may fall into disuse.

6. Community-Centered and Integrated Approaches

Successful interventions often integrate technology with community engagement. IRC WASH (2015) and Water Aid Malawi (2018) emphasize participatory design, local manufacturing, hygiene education, and ongoing support as critical to sustainable adoption. This approach aligns with the

proposed research, which aims not only to develop a low-cost filtration system but also to train communities in its use and maintenance.

7. Research Gaps and Future Directions

While existing studies have demonstrated the efficacy of individual technologies, there is a need for integrated systems that combine multiple adsorbents to address a broader contaminant profile. Most research focuses on bacterial removal, with limited attention to viruses and chemical pollutants. Furthermore, long-term performance, user acceptance, and scalability in real-world rural settings require further investigation especially in Malawi.

8. Conclusion

The literature confirms that low-cost water purification technologies—such as bio-sand filters, ceramic filters, and adsorbent-based systems—offer viable pathways to improve water quality in rural Malawi. However, their success depends on contextual adaptation, affordability, community involvement, and supportive infrastructure. The current study contributes to this field by proposing a multi-layer adsorption column using locally sourced materials, coupled with community training and performance evaluation. This integrated approach aims to develop a sustainable, effective, and culturally appropriate solution to Malawi's rural water crisis.

REFERENCES

1. Mumba M. et al. (2021). Water Availability, Quality and Treatment Methods in Malawi: A Review. *International Journal of Scientific and Research Publications*, 11(6). DOI:10.29322/IJSRP.11.06.2021.p11472
2. Manda, I. K. et al. (2016). Comparative Assessment of Water Treatment Using Polymeric

and Inorganic Coagulants. *Physics and Chemistry of the Earth*, 93, 119–129.

3. Abro, S. H. et al. (2020). Design, Development and Characterization of Graphene Sand Nano-Composite for Water Filtration. *Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences*, 63(2), 118–122.

4. Mwale, P. B. et al. (2015). Assessment of Low-Cost Water Treatment Technologies for Rural Communities in Developing Countries: Case Study of Malawi.

5. CAWST (2019). Bio-sand Filter Construction Manual.

6. Nabatanzi-Muyimba, R. (2017). Ceramic Water Filter for Rural Malawi. University of Malawi.

7. IRC WASH (2015). Low-Cost Water Treatment in Malawi.

8. Water Aid Malawi (2018). Community-Led Water Treatment Solutions in Rural Malawi.

9. Telgote, A. R., & Patil, S. S. (2023). An Overview of the Research and Application of Various Activated Carbon and Ash Used in Water Purification Technology. Retrieved from Research Gate.