

Editorial Article

The Influence of Artificial Intelligence in Global Research of Steel Reinforced Concrete Corrosion

Raja Rizwan Hussain ¹,

Professor, Civil Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia

INTRODUCTION:

The field of civil engineering has long wrestled with the persistent challenge of **steel reinforced concrete (RC) corrosion**, a phenomenon that compromises structural integrity, safety, and economic sustainability. Corrosion of steel reinforcement is influenced by a complex interplay of factors, including **environmental conditions, concrete quality, chemical composition, and load stresses**. Traditional methods of studying and predicting corrosion, such as empirical models and experimental testing, often involve lengthy laboratory procedures and substantial financial investment. In recent years, however, the emergence of **Artificial Intelligence (AI)** has transformed the landscape of research, offering powerful tools for **prediction, monitoring, and mitigation** of RC corrosion at a global scale.

AI IN CORROSION PREDICTION AND ASSESSMENT:

Artificial intelligence, particularly **machine learning (ML) and deep learning (DL)** algorithms, enables researchers to analyze vast datasets obtained from laboratory experiments, field inspections, and structural health monitoring systems. Techniques such as **artificial neural networks (ANN), support vector machines (SVM), and random forests** allow the modeling of complex nonlinear relationships between environmental factors and corrosion progression. Unlike traditional models, AI-based approaches can **predict corrosion rates under varying conditions**, including chloride penetration, carbonation,

moisture exposure, and temperature fluctuations, with remarkable accuracy.

Recent studies have demonstrated the efficacy of AI models in **estimating time-to-corrosion initiation**, assessing the **service life of reinforced concrete structures**, and identifying **critical zones prone to deterioration**. The ability to incorporate **multidimensional and time-dependent variables** gives AI a distinct advantage over conventional empirical formulas, which often oversimplify real-world complexities.

GLOBAL APPLICATIONS AND CASE STUDIES:

On a global scale, AI has facilitated the development of **digital twins** of concrete structures, enabling continuous monitoring and early-warning systems. For instance, research institutions in Europe have integrated **sensor networks** with machine learning algorithms to predict corrosion activity in bridge decks and marine infrastructures. Similarly, projects in the Middle East and Southeast Asia employ AI-based monitoring to manage corrosion in harsh climatic conditions, such as high humidity and salinity, which accelerate steel degradation.

Furthermore, AI has enhanced **computational simulations**, enabling virtual experimentation that reduces the reliance on costly laboratory tests. Through predictive modeling, researchers can optimize **corrosion inhibitors, protective coatings, and concrete mix designs**, tailoring solutions to specific environmental and structural conditions.

Corresponding author: Raja Rizwan Hussain

DOI: [10.5281/zenodo.17809786](https://doi.org/10.5281/zenodo.17809786)

Received 28 Nov 2025; Accepted 02 Dec 2025; Available online 05 Dec 2025.

Copyright © 2025: This is an open access article distributed under the terms of the **Creative Commons Attribution License (CC BY 4.0)**, which permits unrestricted use distribution, and reproduction in any medium, provided the original author and source are credited.

CHALLENGES AND OPPORTUNITIES

Despite its transformative potential, the integration of AI into RC corrosion research faces several challenges. **Data quality and availability** remain critical issues, as AI models rely on accurate and comprehensive datasets to produce reliable predictions. In addition, **interpretability of AI models** is a concern, as complex neural networks often function as “black boxes,” making it difficult to understand the underlying decision-making process. Addressing these challenges requires a combination of **data standardization, interdisciplinary collaboration, and the development of explainable AI frameworks.**

Nonetheless, the opportunities presented by AI in global corrosion research are substantial. By enabling **predictive maintenance, lifecycle cost analysis, and risk assessment**, AI contributes not only to **structural safety** but also to **sustainable infrastructure management**. As urbanization and industrialization accelerate worldwide, the demand for resilient concrete structures will continue to

grow, and AI is poised to play a pivotal role in safeguarding these investments.

CONCLUSION:

The advent of artificial intelligence marks a **new era in the study and management of steel reinforced concrete corrosion**. From predictive modeling to structural monitoring and virtual experimentation, AI empowers engineers and researchers with tools that were previously unattainable. While challenges remain in data acquisition and model interpretability, the global research community has already demonstrated the value of AI in enhancing **accuracy, efficiency, and sustainability** in corrosion assessment. Looking forward, the integration of AI with advanced sensing technologies and material science promises to further revolutionize our ability to **design, maintain, and protect concrete infrastructures worldwide.**